skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xingchao Liu, Lemeng Wu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diffusion models have achieved promising results on generative learning recently. However, because diffusion processes are most naturally applied on the uncon- strained Euclidean space Rd, key challenges arise for developing diffusion based models for learning data on constrained and structured domains. We present a simple and unified framework to achieve this that can be easily adopted to various types of domains, including product spaces of any type (be it bounded/unbounded, continuous/discrete, categorical/ordinal, or their mix). In our model, the diffu- sion process is driven by a drift force that is a sum of two terms: one singular force designed by Doob’s h-transform that ensures all outcomes of the process to belong to the desirable domain, and one non-singular neural force field that is trained to make sure the outcome follows the data distribution statistically. Ex- periments show that our methods perform superbly on generating tabular data, images, semantic segments and 3D point clouds. Code is available at https: //github.com/gnobitab/ConstrainedDiffusionBridge. 
    more » « less